1: Assign to the variable n_dims a single random integer between 3
and 10
set.seed(1)
n_dims<-sample(3:10,1)
print(n_dims)
## [1] 3
a: Create a vector of consecutive integers from 1 to
n_dims2.
vector<-seq(1:n_dims^2)
print(vector)
## [1] 1 2 3 4 5 6 7 8 9
b: Use the sample function to randomly reshuffle these values.
randomvector <- sample(vector)
print(randomvector)
## [1] 4 7 1 2 5 3 9 6 8
c: create a square matrix with these elements. Print out the
matrix.
m<-matrix(data=randomvector, ncol=n_dims)
print(m)
## [,1] [,2] [,3]
## [1,] 4 2 9
## [2,] 7 5 6
## [3,] 1 3 8
d: find a function in r to transpose the matrix. Transpose flips
elements in the matrix. Print it out again and note how it has
changed.
## [,1] [,2] [,3]
## [1,] 4 7 1
## [2,] 2 5 3
## [3,] 9 6 8
e: calculate the sum and the mean of the elements in the first row
and then the last row.
mdataframe<-data.frame(m)
print(mdataframe)
## X1 X2 X3
## 1 4 2 9
## 2 7 5 6
## 3 1 3 8
## 1
## 15
rowSums(mdataframe[n_dims,])
## 3
## 12
## 1
## 5
rowMeans(mdataframe[n_dims,])
## 3
## 4
f: set your code up so you can re-run it to create a matrix of a
different size by only changing the n_dims value